49,718 research outputs found

    Classification of Multipartite Entanglement via Negativity Fonts

    Full text link
    Partial transposition of state operator is a well known tool to detect quantum correlations between two parts of a composite system. In this letter, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state - the negativity fonts. If K-way negativity fonts with non zero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K leq N) yields an operator with negative eigevalues, identifying K-body correlations in the state. Expansion of GPT interms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states, based on underlying structure of global partial transpose of canonical state, are proposed. Number of N-partite entanglement types for an N qubit system is found to be 2^{N-1}-N+2, while the number of major entanglement classes is 2^{N-1}-1. Major classes for three and four qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical state.Comment: 5 pages, No figures, Corrected typo

    Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005

    Get PDF
    Groundwater management / Governance / Groundwater development / Artificial recharge / Water quality / Aquifers / Groundwater irrigation / Water balance / Simulation models / Watershed management / Water harvesting / Decision making / South East Asia / Bangladesh / China / India / Nepal / Pakistan / Syria

    Radiating spherical collapse with heat flow

    Get PDF
    We present here a simple model of radiative gravitational collapse with radial heat flux which describes qualitatively the stages close to the formation of a superdense cold star. Starting with a static general solution for a cold star, the model can generate solutions for the earlier evolutionary stages. The temporal evolution of the model is specified by solving the junction conditions appropriate for radiating gravitational collapse.Comment: 13 pages, including 3 figures, submitted to IJMP-

    All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch

    No full text
    Polarization dependent image artifacts are common in optical coherence tomography imaging. Polarization insensitive detection scheme for swept source based optical coherence tomography systems is well established but is yet to be demonstrated for all fiber spectrometer-based Fourier domain optical coherence tomography systems. In this work, we present an all fiber polarization insensitive detection scheme for spectrometer based optical coherence tomography systems. Images from chicken breast muscle tissue were acquired to demonstrate the effectiveness of this scheme for the conventional Fourier domain optical coherence tomography system

    Strain-driven light polarization switching in deep ultraviolet nitride emitters

    Full text link
    Residual strain plays a critical role in determining the crystalline quality of nitride epitaxial layers and in modifying their band structure; this often leads to several interesting physical phenomena. It is found, for example, that compressive strain in AlxGa1-xN layers grown on AlyGa1-yN (x<y) templates results in an anti-crossing of the valence bands at considerably much higher Al composition than expected. This happens even in the presence of large and negative crystal field splitting energy for AlxGa1-xN layers. A judicious magnitude of the compressive strain can support vertical light emission (out of the c-plane) from AlxGa1-xN quantum wells up to x\approx 0.80, which is desirable for the development of deep ultraviolet light-emitting diodes designed to operate below 250nm with transverse electric polarization characteristics

    Decoherence of tripartite states - a trapped ion coupled to an optical cavity

    Full text link
    We investigate the non-dissipative decoherence of three qubit system obtained by manipulating the state of a trapped two-level ion coupled to an optical cavity. Modelling the environment as a set of noninteracting harmonic oscillators, analytical expressions for the state operator of tripartite composite system, the probability of generating maximally entangled GHZ state, and the population inversion have been obtained. The pointer observable is the energy of the isolated quantum system. Coupling to environment results in exponential decay of off diagonal matrix elements of the state operator with time as well as a phase decoherence of the component states. Numerical calculations to examine the time evolution of GHZ state generation probability and population inversion for different system environment coupling strengths are performed. Using negativity as an entanglement measure and linear entropy as a measure of mixedness, the entanglement dynamics of the tripartite system in the presence of decoherence is analysed.Comment: Revised version, errors corrected and references added. 12 pages, 6 figures, Presented at ICSSUR May 2005, Besancon, Franc

    Un nuevo método en la determinación del cromo hexavalente total en cemento Portland puzolánico

    Get PDF
    Variamine blue was used first time for the detection of hexavalent chromium from cement samples. In present method, cement was treated sequentially with water, sulphate and carbonate buffer to extract soluble, sparingly soluble and insoluble hexavalent chromium respectively. Extracted Cr (VI) was determined using variamine blue as chromogenic reagent. The determination is based on the reaction of hexavalent chromium with potassium iodide in an acid medium to liberate iodine. This oxidizes variamine blue to form a violet coloured species having an absorption to maximum at 556 nm. Energy-dispersive X-ray spectroscopy (EDX) and Infrared Spectroscopy (IR) confirmed the complete extraction of hexavalent chromium by sequential extraction process. SRM 2701 (Reference material from NIST, USA) was used for revalidating the results. The percentage of recovery for proposed and reference method (diphelycarbazide method) varied from 98.5 to 101 and 97.5 to 100.5. Whereas, their relative error percentage varied from -1.5 to 0.33 and -2.5 to 0.5.El azul de variamina se utilizó por primera vez para la detección de cromo hexavalente en muestras de cemento. En el presente método, el cemento se trató secuencialmente con agua, y tampones sulfato y carbonato para extraer el cromo hexavalente soluble, poco soluble e insoluble, respectivamente. El Cr (VI) extraído se determinó utilizando azul de variamina como reactivo cromógeno, por reacción del cromo hexavalente con yoduro de potasio en un medio ácido para liberar yodo. Esto oxida al azul de variamina para formar una especie de color violeta con una absorción máxima a 556 nm. El análisis por energía dispersiva de rayos X (EDX) y la espectroscopía de infrarrojos (IR) confirmaron la extracción completa de cromo hexavalente mediante el proceso de extracción secuencial. Se utilizó SRM 2701 (material de referencia de NIST, EE.UU.) para validar los resultados. El porcentaje de recuperación para el método propuesto frente al de referencia (método de la difenilcarbazida) varió de 98.5 a 101 y 97.5 a 100.5, mientras que su porcentaje de error relativo varió de -1.5 a 0.33 y -2.5 a 0.5

    Role of isospin physics in supernova matter and neutron stars

    Full text link
    We investigate the liquid-gas phase transition of hot protoneutron stars shortly after their birth following supernova explosion and the composition and structure of hyperon-rich (proto)neutron stars within a relativistic mean-field model where the nuclear symmetry energy has been constrained from the measured neutron skin thickness of finite nuclei. Light clusters are abundantly formed with increasing temperature well inside the neutrino-sphere for an uniform supernova matter. Liquid-gas phase transition is found to suppress the cluster yield within the coexistence phase as well as decrease considerably the neutron-proton asymmetry over a wide density range. We find symmetry energy has a modest effect on the boundaries and the critical temperature for the liquid-gas phase transition, and the composition depends more sensitively on the number of trapped neutrinos and temperature of the protoneutron star. The influence of hyperons in the dense interior of stars makes the overall equation of state soft. However, neutrino trapping distinctly delays the appearance of hyperons due to abundance of electrons. We also find that a softer symmetry energy further makes the onset of hyperon less favorable. The resulting structures of the (proto)neutron stars with hyperons and with liquid-gas phase transition are discussed.Comment: 11 pages, 7 figures, RevTe
    corecore